viernes, 2 de septiembre de 2016

INTEGRANTES

SLYDER GAITAN :

Dentro de 5 años me veo culminando mi título de ingeniero civil y más adelante conseguir un buen empleo y todo gracias a mi familia y a Dios.

JUAN CASTILLO 
me veo en 5 años  con un título profesional en derecho y planeando un viaje fuera del país

JANS SARMIENTO

SEBASTIAN HERRERA

EJERCICIO EFECTO DOPPLER


Una ambulancia se mueve con una velocidad de 80 m/s y su sirena emite una frecuencia de 100 Hz, de igual manera en sentido contrario viene un carro a 60 m/s. Calcule la frecuencia cuando los dos autos se están acercando ¿Es mayor o menor?, Calcule la frecuencia cuando se alejan ¿Es mayor o es menor? 

Cuando la ambulancia y el automóvil se acercan la relación entre las frecuencias es

f' = [(V+Vo) / (V–Vs)]. f = [(330+60) / (330–80)].100 ≈ 156 Hz. 

Cuando la ambulancia y el automóvil se alejan la relación entre las frecuencias es 

f' = [(V–Vo) / (V+Vs)]. f = [(330–60) / (330+80)].100 ≈ 65 Hz.




PROBLEMA REFLEXION DEL SONIDO

1.Un barco emite un sonido y escucha el eco 3 segundos después. Determina la profundidad del lecho marino en el cual navega el barco. Elabora un gráfico.


Datos:                                     

t= 3 seg

v= 340 m/seg

h= ?

  Ecuación:

h=   V.t  
        2  

Calculo:

h=    (340 m/seg) x (3 seg)   
                           2


h=   1020 m 
           2


h= 510 m

2.Un hombre trabaja en un hueco profundo y oscuro, cuando su compañero deja caer un martillo simultáneamente le grita ¡Cuidado! Haciendo un análisis físico, estime la posibilidad que tiene el hombre del fondo del hueco para apartarse.

RESPUESTA :la velocidad del sonido supera la velocidad con la que cae el martillo, Le dará  tiempo al hombre del fondo de quitarse y de no ser impactado por el martillo.

APLICACIONES EFECTO DOPPLER

El Radar 

Una de sus aplicaciones más importantes es la del radar (sistema electrónico que permite detectar objetos fuera del alcance de la vista y determinar la distancia a que se encuentran proyectando sobre ellos ondas de radio.) El radar Doppler, que se utiliza a menudo para medir la velocidad de objetos como un coche o una pelota, transmite con una frecuencia constante. Las señales reflejadas por objetos en movimiento respecto a la antena presentarán distintas frecuencias a causa del efecto Doppler.
La Ecocardiografía.
 El efecto Doppler ha adquirido en los últimos años una extraordinaria importancia en el estudio morfológico y funcional cardíaco tanto en sujetos sanos como en aquellos con enfermedades cardíacas. Esto se debe a que esta técnica, que está basada en la emisión y recepción de ultrasonidos, presenta considerables ventajas respecto a otros procedimientos diagnósticos. Los ultrasonidos son ondas sonoras de muy alta frecuencia que avanzan según los principios de las ondas mecánicas, es decir, sufren fenómenos de atenuación, dispersión y reflexión ("rebote") dependiendo de las propiedades físicas de las estructuras que encuentran a su paso. Estas propiedades son aprovechadas para estudiar estructuras situadas en el interior del cuerpo, de tal manera que emitiendo un haz de ultrasonidos sobre la superficie (por ejemplo, del tórax), éste se refleja al chocar con estructuras del interior que no puede atravesar (las estructuras cardíacas), pudiendo recogerse estas señales a través del mismo instrumento utilizado para su emisión. Un aspecto esencial de esta técnica es que es inocua. Hasta la fecha no se conocen efectos nocivos sobre el organismo de la aplicación de ultrasonidos dentro del rango de frecuencias utilizado para el diagnóstico ecográfico.
En Astrofísica :El efecto Doppler ha permitido numerosos avances en astrofísica, por ejemplo para determinar la estructura de las galaxias y la presencia de materia oscura, el estudio de estrellas dobles, el estudio de estrellas dobles o para medir los movimientos de las estrellas y de las galaxias. Esto último, por decirlo de alguna forma, se consigue observando el color de las galaxias y cuerpos estelares, pues la luz, al igual que el sonido, es una onda cuya frecuencia a la que la percibimos puede variar en función del movimiento


EFECTO DOPPLER

El efecto Doppler no es simplemente funcional al sonido, sino también a otros tipos de ondas, aunque los humanos tan solo podemos ver reflejado el efecto en la realidad cuando se trata de ondas de sonido.
El efecto Doppler es el aparente cambio de frecuencia de una onda producida por el movimiento relativo de la fuente en relación a su observador. Si queremos pensar en un ejemplo de esto es bastante sencillo.

Seguramente más de una vez hayas escuchado la sirena de un coche policía o de una ambulancia pasar frente a ti. Cuando el sonido se encuentra a mucha distancia y comienza a acercarse es sumamente agudo hasta que llega a nosotros.

Cuando se encuentra muy cerca nuestro el sonido se hace distinto, lo escuchamos como si el coche estuviera parado. Luego cuando continúa su viaje y se va alejando lo que escuchamos es un sonido mucho más grave.
Esto ocurre ya que las ondas aparentan comenzar a juntarse al mismo tiempo que el coche se dirige hacia una dirección. La imagen de abajo explica mejor esta idea sobre las ondas y la velocidad de los coches.
Como pueden ver en la imagen, el micrófono capta el sonido producido por el coche verde con una onda menos intensa y menos aguda, lo mismo que pasaría si nosotros estuviésemos en el lugar del micrófono. Por otro lado, el coche anaranjado que va avanzando presenta ondas con mucha más intensidad y por tanto también mucho más agudas.

APLICACIONES TECNOLÓGICAS REFLEXIÓN DEL SONIDO

El sonar, acrónimo de Sound Navigation And Ranging, navegación y alcance por sonido, es una técnica que usa la propagación del sonido bajo el agua (principalmente) para navegar, comunicarse o detectar otros buques. El sonar puede usarse como medio de localización acústica funcionando de forma similar al radar, con la diferencia de que en lugar de emitir señales de radiofrecuencia se emplean impulsos sonoros. De hecho, la localización acústica se usó en aire antes que el radar, siendo aún de aplicación el SODAR (la exploración vertical aérea con sonar) para la investigación atmosférica. El término «sonar» se usa también para aludir al equipo empleado para generar y recibir el sonido. Las frecuencias usadas en los sistemas de sonar van desde las infrasónicas a las ultrasónicas.
La ecografía, ultrasonografía o ecosonografía es un procedimiento de imagenología que emplea los ecos de una emisión de ultrasonidos dirigida sobre un cuerpo u objeto como fuente de datos para formar una imagen de los órganos o masas internas con fines de diagnóstico. Un pequeño instrumento "similar a un micrófono" llamado transductor emite ondas de ultrasonidos. Estas ondas sonoras de alta frecuencia se transmiten hacia el área del cuerpo bajo estudio, y se recibe su eco. El transductor recoge el eco de las ondas sonoras y una computadora convierte este eco en una imagen que aparece en la pantalla.
La litotricia es una técnica utilizada para destruir los cálculos que se forman en el riñón, la vejiga, los uréteres o la vesícula biliar. Hay varias formas de hacerla, aunque la más común es la litotricia extracorpórea (por fuera del cuerpo) por ondas de choque. Las ondas de choque se concentran en los cálculos y los rompen en fragmentos diminutos que luego salen del cuerpo en forma natural durante la micción.

FENÓMENO REFLEXIÓN DE ONDA

Se denomina reflexión de una onda al cambio de dirección que experimenta ésta cuando choca contra una superficie lisa y pulimentada sin cambiar de medio de propagación. Si la reflexión se produce sobre una superficie rugosa, la onda se refleja en todas direcciones y se llama difusión.
En la reflexión hay tres elementos: rayo incidente, línea normal o perpendicular a la superficie y rayo reflejado. Se llama ángulo de incidencia al que forma la normal con el rayo incidente y ángulo de reflexión al formado por la normal y el rayo reflejado.

Las leyes de la reflexión dicen que el ángulo de incidencia es igual al ángulo de reflexión y que el rayo incidente, reflejado y la normal están en el mismo plano.

CARACTERISTICAS DEL SONIDO

Intensidad (Depende de la amplitud): Distingue un sonido fuerte de uno débil. Tono (Depende de la frecuencia): Distingue a un sonido agudo (tono alto) de un sonido grave (tono bajo). Timbre (Depende de la forma de onda): Distingue dos sonidos de la misma intensidad y tono, pero producido por distintas fuentes.
INTENSIDAD: La distancia a la que se puede oír un sonido depende de su intensidad, que es el flujo medio de energía por unidad de área perpendicular a la dirección de propagación. En el caso de ondas esféricas que se propagan desde una fuente puntual, la intensidad es inversamente proporcional al cuadrado de la distancia, suponiendo que no se produzca ninguna pérdida de energía debido a la viscosidad, la conducción térmica u otros efectos de absorción. Por ejemplo, en un medio perfectamente homogéneo, un sonido será nueve veces más intenso a una distancia de 100 metros que a una distancia de 300 metros. En la propagación real del sonido en la atmósfera, los cambios de propiedades físicas del aire como la temperatura, presión o humedad producen la amortiguación y dispersión de las ondas sonoras, por lo que generalmente la ley del inverso del cuadrado no se puede aplicar a las medidas directas de la intensidad del sonido.
ALTURA O TONO: Cada sonido se caracteriza por su velocidad específica de vibración, que impresiona de manera peculiar al sentido auditivo. Esta propiedad recibe el nombre de tono. Los sonidos de mayor o menor frecuencia se denominan respectivamente, agudos o graves; términos relativos, ya que entre los tonos diferentes un de ellos será siempre más agudo que el otro y a la inversa.
TIMBRE: Si se toca el situado sobre el do central en un violín, un piano y un diapasón, con la misma intensidad en los tres casos, los sonidos son idénticos en frecuencia y amplitud, pero muy diferentes en timbre. De las tres fuentes, el diapasón es el que produce el tono más sencillo, que en este caso está formado casi exclusivamente por vibraciones con frecuencias de 440 hz. Debido a las propiedades acústicas del oído y las propiedades de resonancia de su membrana vibrante, es dudoso que un tono puro llegue al mecanismo interno del oído sin sufrir cambios. La componente principal de la nota producida por el piano o el violín también tiene una frecuencia de 440 hz. Sin embargo, esas notas también contienen componentes con frecuencias que son múltiplos exactos de 440 hz, los llamados tonos secundarios, como 880, 1.320 o 1.760 hz. Las intensidades concretas de esas otras componentes, los llamados armónicos, determinan el timbre de la nota.¿Qué tipo de onda es el sonido? La propagación del sonido involucra transporte de energía sin transporte de materia, en forma de ondas mecánicas que se propagan a través de un medio elástico sólido, líquido o gaseoso. Entre los más comunes se encuentran el aire y el agua.


LA ACUSTICA

 La acústica es una rama de la física que se encarga de estudiar el sonido y sus diferentes fenómenos a través de la materia (Ya sea sólida líquida y gaseosa) (no se propagan en el vacío). El sonido como tal es una onda mecánica que se trasmite por medio del cual viaja; se produce por vibración de los cuerpos, que se trasmite al aire que los rodea. Se caracteriza por la intensidad, la altura y el timbre.